NEOADJUVANT CHEMOTHERAPY IN CERVICAL CANCER

EVA MARÍA GOMEZ GARCIA MD
Medical Oncology

Cervix Cancer Education Symposium, January 2017, Mexico
Surgery +/- RT or QRT

1B2-IVA CONCOMITANT CHEMORADIOTherapy 6% 5 y (III-IV ???)

PALLIATIVE CHEMOTHERAPY +/- BEVACIZUMAB (toxicity)
Perez CA, Grigsby PW

Radiotherapy

Overall treatment period

Tumor size 4 cm

Lymph node enlargement

Cervix Cancer Education Symposium, January 2017, Mexico

Chin J Cancer Res 2016;28(2):221-227
AJCC Vision

The Transition from Population Based to a more "Personalized" Approach

- **AJCC/UICC TNM Stage** (Basic Classification)
 - TNM

- **AJCC Stage** (Advanced Clinical Relevance)
 - TNM
 - + Prognostic Factors

- **AJCC "Personalized"** (Advanced Clinical + Personalized Relevance)
 - TNM
 - + Prognostic Factors
 - + Risk Assessment Models
 - + Clinical Trial Stratification

Population Survival Outcomes

Personalized Survival Outcomes
1.- Increased peak concentration of cisplatin (CDDP) 89% vs 67% OS 5 y, distant failure 17% vs 23%, toxicity G3/4 39 vs 23%

2.- Surgery after chemo-radiotherapy. Residual disease 14-100%, surgical morbidity acceptable. No randomized trials.

3.- Adjuvant chemotherapy after chemo-radiotherapy. 2 trials Mito-C/5FU No sufficient evidence.

4.- Neoadjuvant chemotherapy before surgery or chemo-radiotherapy.

Cervix Cancer Education Symposium, January 2017, Mexico
RATIONALE FOR THE NEOADJUVANT CHEMOTHERAPY.

1.- Reducing the tumor size,
2.- Expediting the elimination of micrometastasis.
3.- Improving operability
4.-Surgical downstaging.
5. Is associated with fewer side effects than concurrent chemotherapy and radiotherapy.
CHEMOTHERAPY AGENTS USED

<table>
<thead>
<tr>
<th>Study</th>
<th>Chemotherapy regimen, doses</th>
<th>No. of cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoji et al., 2013</td>
<td>Carboplatin (AUC6), paclitaxel (175 mg/m²)/docetaxel (70 mg/m²)</td>
<td>2 (18 patients)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 (5 patients)</td>
</tr>
<tr>
<td>Shen et al., 2012</td>
<td>Cisplatin (20 mg/m² D1-4)/carboplatin (AUC5), paclitaxel (150 mg/m²)</td>
<td>2</td>
</tr>
<tr>
<td>Yamaguchi et al., 2012</td>
<td>Nedaplatin (80 mg/m²), irinotecan (60 mg/m² D1,8)</td>
<td>3</td>
</tr>
<tr>
<td>Pinheiro et al., 2011</td>
<td>Mitomycin C (10 mg/m²), methotrexate (300 mg/m² with folinic acid), bleomycin (15 mg/m² D1,8)</td>
<td>4</td>
</tr>
<tr>
<td>Vizza et al., 2011</td>
<td>Cisplatin (75 mg/m²), paclitaxel (175 mg/m²), ifosfamide (5 g/m², mesna)</td>
<td>3</td>
</tr>
<tr>
<td>Mossa et al., 2010</td>
<td>Cisplatin (50 mg/m²), vincristine (1 mg/m²), bleomycin (25 mg/m² D1,8)</td>
<td>3</td>
</tr>
<tr>
<td>Shoji et al., 2010</td>
<td>Cisplatin (70 mg/m²), irinotecan (70 mg/m² D1,8)</td>
<td>2</td>
</tr>
<tr>
<td>Cho et al., 2009</td>
<td>Cisplatin (75 mg/m²)/carboplatin (AUC5), paclitaxel (135 mg/m²)</td>
<td>2</td>
</tr>
<tr>
<td>Kokawa et al., 2007</td>
<td>Mitomycin-C (10 mg/m²), irinotecan (100 mg/m²) D1,8,15</td>
<td>2 (28 patients)</td>
</tr>
<tr>
<td></td>
<td>Out of 28 days cycles</td>
<td>3 (7 patients)</td>
</tr>
<tr>
<td>Sláma et al., 2007</td>
<td>Cisplatin (50 mg/m²), ifosfamide (5 g/m², mesna)</td>
<td>3</td>
</tr>
<tr>
<td>Eddy et al., 2007</td>
<td>Cisplatin, vincristine</td>
<td>3</td>
</tr>
<tr>
<td>Choi et al., 2006</td>
<td>Cisplatin (100 mg/m²), 5-fluorouracil (1000 mg/m²/day D2-5)</td>
<td>2</td>
</tr>
<tr>
<td>Cai et al., 2006</td>
<td>Cisplatin (100 mg/m²), 5-fluorouracil (1000 mg/m²/day D2-5)</td>
<td>2</td>
</tr>
<tr>
<td>Termrungranglert et al., 2005</td>
<td>Cisplatin (70 mg/m²), gemcitabine (1000 mg/m² D1,8)</td>
<td>2</td>
</tr>
<tr>
<td>Taneja et al., 2005</td>
<td>Cisplatin (50 mg/m²), bleomycin (15 mg/m² D1, 2), vincristine (1 mg/m²)</td>
<td>3</td>
</tr>
<tr>
<td>DeSouza et al., 2004</td>
<td>Cisplatin (60 mg/m²), methotrexate (300 mg/m² with folinic acid), bleomycin (30 mg/m² twice weekly)</td>
<td>3</td>
</tr>
</tbody>
</table>
CHEMOTHERAPY AGENTS USED

<table>
<thead>
<tr>
<th>Reference</th>
<th>Treatment Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Napolitano et al., 2003</td>
<td>Cisplatin (50 mg/m²), bleomycin (15 mg/m² D1, 2), vincristine (1 mg/m²)</td>
</tr>
<tr>
<td>D’Agostino et al., 2002</td>
<td>Cisplatin (100 mg/m²), epirubicin (100 mg/m²), paclitaxel (175 mg/m²)</td>
</tr>
<tr>
<td>Benedetti-Panici et al., 2002</td>
<td>Cisplatin (80 mg/m²), vincristine (1 mg/m²), bleomycin (25 mg/m² 3 days)</td>
</tr>
<tr>
<td>Duenas-Gonzalez et al., 2003</td>
<td>Carboplatin (AUC 6), paclitaxel (175 mg/m²)</td>
</tr>
<tr>
<td>Duenas-Gonzalez et al., 2002</td>
<td>Cisplatin (100 mg/m²), gemcitabine (1 mg/m² D1,8)</td>
</tr>
<tr>
<td>Costa et al., 2001</td>
<td>Cisplatin (40 mg/m²), epirubicin (30 mg/m²), etoposide (75 mg/m²), bleomycin (15 mg D1,2)</td>
</tr>
<tr>
<td>MacLeod et al., 2001</td>
<td>Cisplatin (50 mg/m²)/carboplatin (AUC5) based combination</td>
</tr>
<tr>
<td>Aoki et al., 2001</td>
<td>Cisplatin (60 mg/m²), vinblastine (4 mg/m² D1, 2), bleomycin (25 mg/m² 3 days)</td>
</tr>
<tr>
<td>Hwang et al., 2001</td>
<td>Cisplatin (50 mg/m²), vinblastine (6 mg/m²), bleomycin (25 mg/m² 3 days)</td>
</tr>
<tr>
<td>Chang et al., 2000</td>
<td>Cisplatin (50 mg/m²), vincristine (1 mg/m²), bleomycin (25 mg/m² for 3 days)</td>
</tr>
<tr>
<td>Zanetta et al., 1998</td>
<td>Cisplatin (50 mg/m²) (75 mg/m² in 10 patients), paclitaxel (175 mg/m²), ifosfamide (5 g/m², mesna)</td>
</tr>
<tr>
<td>Sardi et al., 1997</td>
<td>Cisplatin (50 mg/m²), vincristine (1 mg/m²), bleomycin (25 mg/m² D1-3)</td>
</tr>
<tr>
<td>Lacava et al., 1997</td>
<td>Vinrolbine (30 mg/m² weekly)</td>
</tr>
</tbody>
</table>
Neoadjuvant chemotherapy then surgery in locally advanced cervix cancer

Data was collected from 1760 patients enrolled in the above-mentioned studies (22 studies were phase II trials and 8 were phase III trials).

For response:
The ORR was 84%.
Trials that included platinum derivatives
ORR of 79%.
Studies that did not include platinum derivatives ORR of 80%,
P value was 0.07.
Down-staging 82%

Figure 1. Treatment response by stage. CR, complete remission; PR, partial remission; SD, stable disease; DP, disease progression.
Neoadjuvant chemotherapy then surgery or radiotherapy in locally advanced cervix cancer

- Stage IB2 to IIB, 43 patients
- Complete response 39%
- Partial response 51%
- Stable disease 9%
- Down-staging 72%

- Neoadjuvant chemotherapy then chemoradiotherapy phase II
- Respuesta completa 70% post-NACT
- 85% post-QRT.

Patients who received neoadjuvant chemotherapy, 90% of them underwent surgery,

The standard operation was radical hysterectomy with pelvic lymphadenectomy (type III, or IV).
5.6% underwent also para-aortic lymphadenectomy due to positive para-aortic lymph nodes.

Resection rate OR, 1.55; 95% CI, 0.96–2.50; p = 0.07

JCOG 0102 N Katsumata, H Yoshikawa
Neoadjuvant chemotherapy plus QX vs QX or QRT

2010 The Cochrane Database of Systematic Reviews curated by the MRC Clinical Trial Unit, London, UK, 1072 pacientes 1B1-III

PFS (HR, 0.76; 95% CI, 0.62–0.94; p = 0.01),

- STAGE 1B1-II
 - Progression-free survival 59% versus 13% p = 0.02
- Stage III
 - PFS : 41.9% vs 36.4%,
 - p = 0.29
Neoadjuvant chemo plus surgery vs radiotherapy

Italy stage 1B2-IIB
Overall survival 5y
64.7% vs 18% p = 0.005
Stage III
OS : 41.6% vs 36.7%, p = 0.36;
Relative risk of OS QT + QX vs RT 0.63 (95% CI, 0.47–0.86).

Park, Dong Choon MD, PhD Phase II
- OS 2 and 5 years 94 y 89%

Neoadjuvant chemotherapy plus QX vs QX or QRT

Retrospective
476 Patients 1B2-IIB
QT + Qx vs QX
OS 1.813; p = 0.0175
QT + Qx versus QRT
OS HR, 3.157; p < 0.0001

2010 The Cochrane Database of Systematic Reviews curated by the MRC Clinical Trial Unit, London, UK, 1072 pacientes 1B1-III
- HR, 0.85; 95% CI, 0.67–1.07; p = 0.17
• NACT + QX radical versus QX radical

• Phase III stage IB2, IIA2 y IIB

• N KATSUMATA

• Bleomicine, vincristine, mitomicin, cisplatin

• 134 patients

• Overall survival 70.0% NACT versus 74.4% surgery group \(P=0.85 \)

• High risk patients NACT 58% vs Qx 80% \(P=0.015 \)

• Many patients received radiotherapy

(JCOG 0102) N Katsumata, H Yoshikawa

• NACT + QX + ADYUVANCIA

OS 5 years 81% and PFS 70%, positive nodes 75% and negative nodes 88%.

Angioli, R Gynecol Oncol (2012).
NEOADJUVANT CHEMOTHERAPY

18 randomized trials 2074 patients

Interval between cycles
Cycles <14 days HR = 0.83, 95% CI = 0.69 to 1.00, p = 0.046
Cycles >14 days HR =1.25, 95% CI = 1.07 to 1.46, p = 0.005

Intensity of doses of cisplatin
> 25mg/m2 per week HR = 0.91, 95% CI = 0.78 to 1.05, p = 0.20
< 25 mg/m2 per week HR = 1.35, 95% CI = 1.11 to 1.14, p = 0.002

Histologies included squamous cell carcinoma, adenosquamous carcinoma, and/or, adenocarcinoma
Figure 1. Treatment response by stage. CR, complete remission; PR, partial remission; SD, stable disease; DP, disease progression.
TOXICITY

• QRT Toxicidad grado 3/4 20% durante la NACT (11% hematologica, 9% no-hematologica)
• Toxicidad grado ¾ 52% durante QRT concomitante (hematologica: 41%, no-hematologica: 22%)

The combination of chemotherapy followed by surgery is associated with fewer side effects than concurrent chemotherapy and radiotherapy.

The study of Tan and Zahra and Green et al. showed grade 3 and 4 late toxicity with a range of 18.3% to 22%, and reported urinary and/or intestinal complications.

Angioli, R Gynecol Oncol (2012).
Conclusiones:

MODERADO nivel de evidencia
Heterogeneidad en los estudios.
Brazos de comparacion no optimos
Esquemas de quimioterapia diversos.

Avances:
Ciclos cortos
Dosis densas.
Baja etapa
Mayor resecabilidad.
Similar toxicidad
ESTUDIOS CORRIENDO

PHASE III

Induction Chemotherapy Plus Chemoradiation as First Line Treatment for Locally Advanced Cervical Cancer (INTERLACE)

Control arm (CCRT alone)
- XRT (40-50.4 Gy in 20-28 fractions) + BRT (minimal total EQD2 dose of 76-86 Gy)
- Concurrent CDDP 40 mg/m², weekly for 5 doses

Experimental arm (Neoadjuvant CT + CCRT)
- Neoadjuvant CT:
 - PTX: 80 mg/m² + CBDDA: AUC =2, weekly for 6 doses (day 1, 8, 15, 22, 29, and 36)
 - XRT (40-50.4 Gy in 20-28 fractions) + BRT (minimal total EQD2 dose of 76-86 Gy)
 - Concurrent CDDP 40 mg/m², weekly for 5 doses

Cervix Cancer Education Symposium, January 2017, Mexico