TRC 105 +/- Bevacizumab for Patients with Metastatic Refractory Gestational Trophoblastic Neoplasia

JOHN R. LURAIN, MD

JOHN I. BREWER TROPHOBLASTIC DISEASE CENTER
DEPARTMENT OF OBSTETRICS AND GYNECOLOGY
ROBERT H. LURIE COMPREHENSIVE CANCER CENTER
NORTHWESTERN UNIVERSITY FEINBERG SCHOOL OF MEDICINE
CHICAGO, IL, USA
Disclosures

- I have no conflicts of interest to disclose

- Trial funded by Tracon Pharmaceuticals
Gestational Trophoblastic Neoplasia

- Invasive mole
- Choriocarcinoma
- Placental site trophoblastic tumor
- Epithelioid trophoblastic tumor
Gestational Trophoblastic Neoplasia

- Overall cure rate >90%
- Thorough evaluation and staging allow selection of appropriate therapy that maximizes chances for cure while minimizing toxicity.
- Low-Risk GTN (stage I-III, score <7) can be treated with single-agent chemotherapy resulting in a survival rate approaching 100%
- High-Risk GTN (stage II-IV, score ≥ 7) requires initial multiagent chemotherapy with or without adjuvant radiation and surgery to achieve a survival rate of 80-90%
Salvage Therapy for High-Risk GTN

- Approximately 30% of patients with FIGO-defined metastatic high-risk GTN will have an incomplete response to first-line therapy or will relapse from remission and require salvage therapy.

- Most high-risk GTN patients who fail initial therapy will have:
 - Multiple metastases to sites other than the lung and vagina
 - High FIGO scores
 - Inadequate initial therapy

- The ultimate cure of these high-risk patients who fail initial therapy depends, therefore, on the success of salvage chemotherapy often combined with adjuvant surgical procedures and radiotherapy.
Primary Treatment of High-Risk Metastatic Gestational Trophoblastic Neoplasia with EMA-CO

<table>
<thead>
<tr>
<th>Authors</th>
<th>No. of Patients</th>
<th>Complete Response %</th>
<th>Survival %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bower, et al 1997</td>
<td>151</td>
<td>78</td>
<td>85</td>
</tr>
<tr>
<td>Kim, et al 1998</td>
<td>96</td>
<td></td>
<td>91</td>
</tr>
<tr>
<td>Soto-Wright, et al 1997*</td>
<td>7</td>
<td>71</td>
<td>100</td>
</tr>
<tr>
<td>Matsui, et al 2000*</td>
<td>27</td>
<td>78</td>
<td>89</td>
</tr>
<tr>
<td>Lurain, et al 2006</td>
<td>30</td>
<td>67</td>
<td>93</td>
</tr>
<tr>
<td>Turan, et al 2006</td>
<td>23</td>
<td>82</td>
<td>91</td>
</tr>
<tr>
<td>Lu, et al 2008</td>
<td>45</td>
<td>78</td>
<td>93</td>
</tr>
</tbody>
</table>

*EMA only
Salvage Chemotherapy for High-Risk GTN

- EMA-EP (etoposide, methotrexate, actinomycin D, etoposide, cisplatin)
- BEP (bleomycin, etoposide, cisplatin)
- VIP (etoposide, ifosfamide, cisplatin)
- ICE (ifosfamide, carboplatin, etoposide)
- TP/TE (paclitaxel & cisplatin/paclitaxel & etoposide)

Filgrastim or Pegfilgrastim used to prevent neutropenia and avoid treatment delays
Salvage Therapy for High-Risk GTN

- Salvage therapy with etoposide/platinum-based chemotherapy regimens, often in conjunction with surgery to resect resistant foci of disease and/or irradiation to treat newly developed brain metastases will result in cure of approximately 80% of high-risk patients who fail initial multiagent chemotherapy.
Trial Background

- Endoglin (CD105), a 633 amino acid, 180 kDa membrane receptor is highly expressed by proliferating endothelial cells in solid tumors as well as syncytiotrophoblasts and is required for angiogenesis.

- Endoglin expression is increased in choriocarcinoma compared to normal placenta, it induces trophoblastic outgrowth and migration, and its production is stimulated by methotrexate.

- In observational studies, high levels of endoglin are associated with increased resistance to methotrexate.

- Therefore, endoglin is a potential target for the treatment of GTN.
Trial Background

- TRC105 is a chimeric IgG1 anti-endoglin monoclonal antibody with high avidity (Kd=5 pM)

- Phase I/II trials of TRC05 have shown activity in a variety of cancers (prostate, renal, breast, liver, GBM) as both single agent and in combination (bevacizumab, sorafenib, and axitinib)

- Mechanisms of action include direct growth suppression of endothelial cells, induction of apoptosis, and antibody-dependent cell-mediated cytotoxicity, competes with BMP9

- Common toxicites include: infusion reaction (rigors, bronchospasm, itch, BP and HR changes) anemia, fatigue, epistaxis, gingival bleeding, headache.
Trial Schema

Day 1
- Bevacizumab 10 mg/kg

Day 8
- TRC 105 3 mg/kg

Day 11
- TRC 105 7 mg/kg

Day 15
- Bevacizumab 10 mg/kg
- TRC 105 10 mg/kg

Day 22
- TRC 105 10 mg/kg

Cycle 1

* Pre-meds – acetominophen, methyprednisolone, famotidine, cetirizine

Day 1
- Bevacizumab 10 mg/kg

Day 8
- TRC 105 10 mg/kg

Day 15
- Bevacizumab 10 mg/kg
- TRC 105 10 mg/kg

Day 22
- TRC 105 10 mg/kg

Cycle 2 +
Patient KA History

- March 2013 miscarriage followed by the development of a uterine mass and persistently elevated β-hCG suspicious for GTN.
- Treated with single-agent weekly MTX (x2) and then pulsed ACT-D (x2).
- Underwent hysterectomy-pathology c/w choriocarcinoma.
- Initiated EMA-CO with no response; switched to EMA-EP and went into remission in October 2013 after 7 cycles + 3 consolidation cycles.
- December 2013 recurred with multiple pulmonary metastases. Received TP/TE (x3) but progressed, then received ICE (x2).
- May 2014 underwent high-dose chemotherapy with stem cell rescue, resulting in a brief normalization of her β-hCG.
- June/July 2014 multiple pulmonary nodules. Thoracoscopic resection of 10 pulmonary nodules, but continued to have a rising β-hCG.
- Treated with capecitabine (x3)
Beta hCG Response Curve while on Trial

Cycle #1
Cycle #2
Cycle #3
Cycle #4
Cycle #5
Cycle #6
Cycle #7
Cycle #8

hCG

2/2/15 3/2/15 4/2/15 5/2/15 6/2/15 7/2/15 8/2/15 9/2/15 10/2/15 11/2/15
Patient KA - Toxicities

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>NCI CTCAE (version 4) Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epistaxis</td>
<td>1</td>
</tr>
<tr>
<td>Insomnia</td>
<td>1</td>
</tr>
<tr>
<td>Skin Rash</td>
<td>1</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>1</td>
</tr>
<tr>
<td>Anemia</td>
<td>1</td>
</tr>
<tr>
<td>Chest heaviness</td>
<td>1</td>
</tr>
<tr>
<td>Hoarseness / Sore throat</td>
<td>1</td>
</tr>
<tr>
<td>Elevated Alk Phosphotase</td>
<td>1</td>
</tr>
<tr>
<td>Gum infection / pain</td>
<td>2</td>
</tr>
<tr>
<td>Hypertension</td>
<td>3</td>
</tr>
<tr>
<td>Intermittent Migraine</td>
<td>3</td>
</tr>
<tr>
<td>Fatigue</td>
<td>3</td>
</tr>
</tbody>
</table>
Patient AD History

- 33-year-old G2 P1011. 2/2013 diagnosed with post-abortal choriocarcinoma with vascular mass in uterus and > 20 lung metastases, ß-hCG=667
- Received MAC x 4 with partial response- persistent mass in uterus
- TLH 7/2013
- EMA-CO x 4 postop. ß-hCG NL after 1 cycle. Last dose 8/2013
- 1/2014 rise in ß-hCG. CT chest showed LUL lesion- VATS. hCG postop 38. EMA-EP x 6 cycles with normalization of ß-hCG. Last dose 3/2014
- 6/2014 ß-hCG rise to 90. PET/CT negative. TE/TP with ß-hCG nadir =7. Imaging negative.
- October 2014 ß-hCG rise to 57. Carboplatin/Gemcitabine x4 with nadir ß-hCG to 9 then increase to 106.
- 1/2015 ICE x 3 with nadir ß-hCG to 55, then rise to 197
- 4/2015 capecitabine x2 cycles. No response. ß- hCG increase to 351.
- Imaging showed right adrenal mass. Adrenalectomy (+) choriocarcinoma.
- Postop ß-hCG rise with new multiple lung metastases. Olaparib x2 cycles and carboplatin x1 cycle with no response
β-hCG Response

beta hCG
β- hCG Response Curve while on Trial

![Graph showing β-hCG levels over time with cycles marked at specific dates.](image-url)
Patient AD - Toxicities

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>NCI CTCAE (version 4) Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatigue</td>
<td>1</td>
</tr>
<tr>
<td>RUQ pain</td>
<td>1</td>
</tr>
<tr>
<td>Cough</td>
<td>1</td>
</tr>
<tr>
<td>Headache</td>
<td>3</td>
</tr>
<tr>
<td>Vomiting</td>
<td>2</td>
</tr>
<tr>
<td>Fever</td>
<td>1</td>
</tr>
</tbody>
</table>
Conclusions

- TRC105+bevacizumab may be an active and well tolerated regimen in patients with multi-drug resistant GTN.

- Given the observed complete response in one patient, a phase II trial of the combination is planned.
Proposed Phase II Trial

- Post-molar GTN, Choriocarcinoma, PSTT/ETT
- Elevated hCG or measurable disease for PSTT/ETT
- 1 prior multi-agent chemo therapy regimen
- Age > 12 yo, ECOG PS ≤ 1
Proposed Phase II Trial

Primary Endpoint:
- To determine ORR of single-agent TRC105 and the combination of TRC105 and bevacizumab in patients with refractory GTN (choriocarcinoma, PSTT, ETT).

Secondary Endpoints:
- To determine PFS
- To determine ORR of single-agent bevacizumab in patients with TRC105 refractory GTN
- To evaluate the formation of TRC105 anti-product antibodies
- To evaluate PK of TRC105 and bevacizumab
- To determine the frequency and severity of adverse events as assessed by NCI CTCAE (Version 4.03)
- To explore the effects of TRC105 and bevacizumab on circulating angiogenic protein biomarkers (Day 1, CR or change Rx, EOS)
Participating ISSTD Member Institutions

- Brigham & Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Charing Cross Hospital, Imperial College, London, UK
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA